Почему нет вакцины от ВИЧ?

Перевод статьи Рональда Дезросьерса с сайта theconversation.com

Вакцина против ВИЧ / СПИДа: почему у нас нет ни одной вакцины спустя 37 лет, в то время как есть несколько вакцин от COVID-19 уже через несколько месяцев?

Оспа была уничтожена с лица Земли после проведения высокоэффективной всемирной кампании вакцинации. Паралитический полиомиелит больше не является проблемой в США из-за разработки и использования эффективных вакцин против полиовируса. В настоящее время миллионы жизней были спасены благодаря быстрому развертыванию эффективных вакцин против COVID-19. И все же прошло 37 лет с тех пор, как ВИЧ был обнаружен как причина СПИДа, а вакцины еще нет. Здесь я опишу трудности, с которыми сталкивается разработка эффективной вакцины против ВИЧ / СПИДа.

Я профессор патологии Медицинской школы Миллера Университета Майами. Моя лаборатория известна открытием обезьяньего вируса под названием SIV, или вируса обезьяньего иммунодефицита . SIV — это близкий родственник обезьяньего вируса, вызывающего СПИД у человека, — ВИЧ или вируса иммунодефицита человека. Мои исследования внесли важный вклад в понимание механизмов, посредством которых ВИЧ вызывает заболевание, и в усилия по разработке вакцины.

Усилия по разработке вакцины против ВИЧ не увенчались успехом

Вакцины, несомненно, были самым мощным оружием общества против вирусных заболеваний, имеющих важное медицинское значение. Когда в начале 80-х годов прошлого века на сцену вышла новая болезнь СПИД, а в 1983-84 годах был обнаружен вызвавший ее вирус, было вполне естественно думать, что исследовательское сообщество сможет разработать вакцину против него.

На теперь известной пресс-конференции в 1984 году, на которой было объявлено, что ВИЧ является причиной СПИДа, тогдашний министр здравоохранения и социальных служб США Маргарет Хеклер предсказала, что вакцина будет доступна через два года . Что ж, прошло 37 лет, а вакцины нет. Быстрота разработки и распространения вакцины против COVID-19 резко контрастирует с отсутствием вакцины против ВИЧ. Проблема не в провале правительства. Проблема не в недостатке средств. Трудность заключается в самом вирусе ВИЧ. В частности, это включает невероятное разнообразие штаммов ВИЧ и стратегии уклонения вируса от иммунного ответа.

На данный момент было проведено пять крупномасштабных испытаний эффективности вакцины против ВИЧ в рамках Фазы 3 , каждое стоимостью более 100 миллионов долларов США. Первые три из них довольно убедительно провалились ; нет защиты от заражения ВИЧ, нет снижения вирусной нагрузки у инфицированных. Фактически, в третьем из этих испытаний, исследовании STEP, была статистически значимо более высокая частота инфекции у вакцинированных лиц.

Четвертое испытание, противоречивое испытание RV144 в Таиланде , первоначально сообщало об успешной защите от заражения ВИЧ среди вакцинированных лиц. Однако последующий статистический анализ показал, что вероятность того, что защита от заражения работает, составляет менее 78%.

Пятое испытание вакцины, испытание HVTN 702, было призвано подтвердить и расширить результаты испытания RV144. Испытание HVTN702 было прервано досрочно из-за бесполезности. Нет защиты от заражения. Никакого снижения вирусной нагрузки. Ой.

Сложность ВИЧ

В чем проблема? Биологические свойства, которые приобрел ВИЧ, очень и очень затрудняют разработку успешной вакцины. Что это за свойства?

Прежде всего, это непрерывная неумолимая репликация вируса. Как только ВИЧ попадает в дверь, это «попался!». Многие вакцины не защищают абсолютно от заражения инфекцией, но они способны серьезно ограничить репликацию вируса и любую болезнь, которая может возникнуть. Чтобы вакцина была эффективной против ВИЧ, она, вероятно, должна обеспечить абсолютный стерилизующий барьер, а не просто ограничивать репликацию вируса.

ВИЧ развил способность генерировать и переносить в следующие поколения вируса многие мутации в своей генетической информации. Следствием этого является огромное количество вариаций среди штаммов вируса не только от одного человека к другому, но даже внутри одного человека. Для сравнения воспользуемся гриппом. Всем известно, что людям необходимо проходить ревакцинацию против вируса гриппа каждый сезон из-за сезонной изменчивости циркулирующего штамма гриппа. Что ж, вариабельность ВИЧ в пределах одного инфицированного человека превышает всю изменчивость последовательности вируса гриппа во всем мире в течение всего сезона.

Что нужно добавить в вакцину, чтобы покрыть такую ​​степень изменчивости штаммов?

ВИЧ также развил невероятную способность защищаться от распознавания антителами. Оболочечные вирусы, такие как коронавирусы и вирусы герпеса, кодируют структуру на своей поверхности, которую каждый вирус использует для проникновения в клетку. Эта структура называется « гликопротеином », что означает, что она состоит как из сахаров, так и из белка. Но гликопротеин оболочки ВИЧ чрезвычайно развит. Это белок с наиболее высоким содержанием сахара из всех вирусов всех 22 семейств. Более половины веса составляет сахар. И вирус нашел способ, то есть вирус эволюционировал в результате естественного отбора, чтобы использовать эти сахара в качестве щитов, чтобы защитить себя от распознавания антителами, которые пытается создать инфицированный хозяин. Клетка-хозяин добавляет эти сахара, а затем рассматривает их как свои собственные.

Эти свойства имеют важные последствия для усилий по разработке вакцины. Антитела, которые вырабатывает ВИЧ-инфицированный, обычно обладают очень слабой нейтрализующей активностью против вируса. Более того, эти антитела очень специфичны к штамму; они нейтрализуют штамм, которым инфицирован человек, но не тысячи и тысячи других штаммов, циркулирующих среди населения. Исследователи знают, как сделать антитела, которые нейтрализуют один штамм, но не антитела, способные защищать от тысяч и тысяч штаммов, циркулирующих в популяции. Это серьезная проблема для усилий по разработке вакцины.

ВИЧ постоянно развивается у одного инфицированного человека, чтобы быть на шаг впереди иммунных реакций. Хозяин генерирует особый иммунный ответ, который атакует вирус. Это оказывает избирательное давление на вирус, и в результате естественного отбора появляется мутировавший вариант вируса, который больше не распознается иммунной системой человека. Результатом является непрерывная неизбежная репликация вируса.

Итак, должны ли мы, исследователи, сдаться? Нет, не надо. Один из подходов, который исследователи пробуют на животных моделях в нескольких лабораториях, заключается в использовании вирусов герпеса в качестве векторов для доставки белков вируса СПИДа. Семейство вирусов герпеса относится к категории «стойких». Заразившись вирусом герпеса, вы инфицированы на всю жизнь. И иммунные реакции сохраняются не только как память, но и постоянно активны. Однако успех этого подхода по-прежнему будет зависеть от выяснения того, как вызвать широту иммунных ответов, которые позволят охватить огромную сложность последовательностей ВИЧ, циркулирующих в популяции.

Другой подход — взглянуть на защитный иммунитет под другим углом. Хотя подавляющее большинство ВИЧ-инфицированных вырабатывают антитела со слабой штамм-специфической нейтрализующей активностью, некоторые редкие люди вырабатывают антитела с сильной нейтрализующей активностью против широкого спектра изолятов ВИЧ. Эти антитела редки и очень необычны, но у нас, ученых, они есть.

Кроме того, ученые недавно выяснили способ достижения защитных уровней этих антител для жизни с помощью одного приема. На всю жизнь! Эта доставка зависит от вирусного вектора, вектора, называемого аденоассоциированным вирусом . Когда вектор вводится в мышцу, мышечные клетки становятся фабриками, которые непрерывно производят мощные нейтрализующие антитела широкого спектра действия. Исследователи недавно задокументировали непрерывную продукцию у обезьяны в течение шести с половиной лет .

Мы делаем успехи. Мы не должны сдаваться.